CellChat

Beta

New application is live now

CellChat

Cell-Cell communication

Notebooks

Premium

Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data - stdeconvolve
lock icon

BioTuring

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial patterns and gene expression variation. To address this challenge, we develop STdeconvolve as a reference-free approach to deconvolve underlying cell types comprising such multi-cellular pixel resolution spatial transcriptomics (ST) datasets. Using simulated as well as real ST datasets from diverse spatial transcriptomics technologies comprising a variety of spatial resolutions such as Spatial Transcriptomics, 10X Visium, DBiT-seq, and Slide-seq, we show that STdeconvolve can effectively recover cell-type transcriptional profiles and their proportional representation within pixels without reliance on external single-cell transcriptomics references. **STdeconvolve** provides comparable performance to existing reference-based methods when suitable single-cell references are available, as well as potentially superior performance when suitable single-cell references are not available. STdeconvolve is available as an open-source R software package with the source code available at https://github.com/JEFworks-Lab/STdeconvolve .
Identifying tumor cells at the single-cell level using machine learning - inferCNV
lock icon

BioTuring

Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation—the assignment of cell type or cell state to each sequenced cell—is a challenge, especially identifying tumor cells within single-cell or spatial sequencing experiments. Here, we propose ikarus, a machine learning pipeline aimed at distinguishing tumor cells from normal cells at the single-cell level. We test ikarus on multiple single-cell datasets, showing that it achieves high sensitivity and specificity in multiple experimental contexts. **InferCNV** is a Bayesian method, which agglomerates the expression signal of genomically adjointed genes to ascertain whether there is a gain or loss of a certain larger genomic segment. We have used **inferCNV** to call copy number variations in all samples used in the manuscript.
Only CPU
inferCNV
ADImpute: Adaptive Dropout Imputer
lock icon

BioTuring

Single-cell RNA sequencing (scRNA-seq) protocols often face challenges in measuring the expression of all genes within a cell due to various factors, such as technical noise, the sensitivity of scRNA-seq techniques, or sample quality. This limitation gives rise to a need for the prediction of unmeasured gene expression values (also known as dropout imputation) from scRNA-seq data. ADImpute (Leote A, 2023) is an R package combining several dropout imputation methods, including two existing methods (DrImpute, SAVER), two novel implementations: Network, a gene regulatory network-based approach using gene-gene relationships learned from external data, and Baseline, a method corresponding to a sample-wide average.. This notebook is to illustrate an example workflow of ADImpute on sample datasets loaded from the package. The notebook content is inspired from ADImpute's vignette and modified to demonstrate how the tool works on BioTuring's platform.
Only CPU
ADImpute
Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
lock icon

BioTuring

Single-cell RNA sequencing (scRNA-seq) data have allowed us to investigate cellular heterogeneity and the kinetics of a biological process. Some studies need to understand how cells change state, and corresponding genes during the process, but it is challenging to track the cell development in scRNA-seq protocols. Therefore, a variety of statistical and computational methods have been proposed for lineage inference (or pseudotemporal ordering) to reconstruct the states of cells according to the developmental process from the measured snapshot data. Specifically, lineage refers to an ordered transition of cellular states, where individual cells represent points along. pseudotime is a one-dimensional variable representing each cell’s transcriptional progression toward the terminal state. Slingshot which is one of the methods suggested for lineage reconstruction and pseudotime inference from single-cell gene expression data. In this notebook, we will illustrate an example workflow for cell lineage and pseudotime inference using Slingshot. The notebook is inspired by Slingshot's vignette and modified to demonstrate how the tool works on BioTuring's platform.
Only CPU
slingshot

Trends

ADImpute: Adaptive Dropout Imputer

BioTuring

Single-cell RNA sequencing (scRNA-seq) protocols often face challenges in measuring the expression of all genes within a cell due to various factors, such as technical noise, the sensitivity of scRNA-seq techniques, or sample quality. This limitation(More)
Only CPU
ADImpute
Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata.

BioTuring

SCANPY integrates the analysis possibilities of established R-based frameworks and provides them in a scalable and modular form. Specifically, SCANPY provides preprocessing comparable to SEURAT and CELL RANGER, visualization through TSNE, graph-d(More)
Only CPU
Scanpy
Evaluating Performance on Single-Cell Datasets using BioTuring Alpha, Scanpy and Seurat

BioTuring

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression at the individual cell level, enabling researchers to uncover heterogeneity and dynamics within complex cellular populations. To analyze and interpret scRNA-seq da(More)
infercnvpy: Scanpy plugin to infer copy number variation from single-cell transcriptomics data

BioTuring

InferCNV is used to explore tumor single cell RNA-Seq data to identify evidence for somatic large-scale chromosomal copy number alterations, such as gains or deletions of entire chromosomes or large segments of chromosomes. This is done by exploring (More)
scGPT: Towards Building a Foundational Model for Single-Cell Multi-omics Using Generative AI

BioTuring

Generative pre-trained models have demonstrated exceptional success in various fields, including natural language processing and computer vision. In line with this progress, scGPT has been developed as a foundational model tailored specifically for t(More)
Required GPU
scgpt
Seurat
Identifying tumor cells at the single-cell level using machine learning - inferCNV

BioTuring

Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation—the(More)
Only CPU
inferCNV
pySCENIC: Single-Cell rEgulatory Network Inference and Clustering

BioTuring

SCENIC Suite is a set of tools to study and decipher gene regulation. Its core is based on SCENIC (Single-Cell Regulatory Network Inference and Clustering) which enables you to infer transcription factors, gene regulatory networks and cell types from(More)
Only CPU
pySCENIC
Bioturing Massive-scale Analysis Solution: Running analysis for massive-scale data from Seurat dataset

BioTuring

This tool provides a user-friendly and automated way to analyze large-scale single-cell RNA-seq datasets stored in RDS (Seurat) format. It allows users to run various analysis tools on their data in one command, streamlining the analysis workflow and(More)
Only CPU
inferCNV
SCEVAN: Single CEll Variational ANeuploidy analysis

BioTuring

In the realm of cancer research, grasping the intricacies of intratumor heterogeneity and its interplay with the immune system is paramount for deciphering treatment resistance and tumor progression. While single-cell RNA sequencing unveils diverse t(More)
Required GPU
scevan
BioTuring Data Converter: Seurat <=> Scanpy for single-cell data transcriptomic and spatial transcriptomics

BioTuring

This notebook illustrates how to convert data from a Seurat object into a Scanpy annotation data and a Scanpy annotation data into a Seurat object using the BioStudio data transformation library (currently under development). It facilitates continued(More)
Geneformer: a deep learning model for exploring gene networks

BioTuring

Geneformer is a foundation transformer model pretrained on a large-scale corpus of ~30 million single cell transcriptomes to enable context-aware predictions in settings with limited data in network biology. Here, we will demonstrate a basic workflow(More)
Single-Cell Best Practices

BioTuring

The goal of this book is to teach newcomers and advanced professionals alike, the best practices of single-cell sequencing analysis. This book will teach you the most common analysis steps ranging from preprocessing to visualization to statistical ev(More)
Required GPU
Scanpy
scvi
Monocle3 - An analysis toolkit for single-cell RNA-seq

BioTuring

Build single-cell trajectories with the software that introduced **pseudotime**. Find out about cell fate decisions and the genes regulated as they're made. Group and classify your cells based on gene expression. Identify new cell types and states a(More)
Monorail-pipeline and Recount3

BioTuring

Monorail can be used to process local and/or private data, allowing results to be directly compared to any study in recount3. Taken together, Monorail-pipeline tools help biologists maximize the utility of publicly available RNA-seq data, especially (More)
Only CPU
recount3
Inference and analysis of cell-cell communication using CellChat

BioTuring

Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactor(More)
Required GPU
CellChat