CellChat

Beta

New application is live now

CellChat

Cell-Cell communication

Notebooks

Premium

Hierarchicell: estimating power for tests of differential expression with single-cell data
lock icon

BioTuring

Power analyses are considered important factors in designing high-quality experiments. However, such analyses remain a challenge in single-cell RNA-seq studies due to the presence of hierarchical structure within the data (Zimmerman et al., 2021). As cells sampled from the same individual share genetic and environmental backgrounds, these cells are more correlated than cells sampled from different individuals. Currently, most power analyses and hypothesis tests (e.g., differential expression) in scRNA-seq data treat cells as if they were independent, thus ignoring the intra-sample correlation, which could lead to incorrect inferences. Hierarchicell (Zimmerman, K.D. and Langefeld, C.D., 2021) is an R package proposed to estimate power for testing hypotheses of differential expression in scRNA-seq data while considering the hierarchical correlation structure that exists in the data. The method offers four important categories of functions: data loading and cleaning, empirical estimation of distributions, simulating expression data, and computing type 1 error or power. In this notebook, we will illustrate an example workflow of Hierarchicell. The notebook is inspired by Hierarchicell's vignette and modified to demonstrate how the tool works on BioTuring's platform.
Cell2location: Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomic
lock icon

BioTuring

Cell2location is a principled Bayesian model that can resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues. Cell2location accounts for technical sources of variation and borrows statistical strength across locations, thereby enabling the integration of single cell and spatial transcriptomics with higher sensitivity and resolution than existing tools. This is achieved by estimating which combination of cell types in which cell abundance could have given the mRNA counts in the spatial data, while modelling technical effects (platform/technology effect, contaminating RNA, unexplained variance). This tutorial shows how to use cell2location method for spatially resolving fine-grained cell types by integrating 10X Visium data with scRNA-seq reference of cell types. Cell2location is a principled Bayesian model that estimates which combination of cell types in which cell abundance could have given the mRNA counts in the spatial data, while modelling technical effects (platform/technology effect, contaminating RNA, unexplained variance).
Required GPU
Cell2Location
iBRIDGE: A Data Integration Method to Identify Inflamed Tumors from Single-Cell RNAseq Data and Differentiate Cell Type-Specific Markers of Immune-Cell Infiltration
lock icon

BioTuring

The development of immune checkpoint-based immunotherapies has been a major advancement in the treatment of cancer, with a subset of patients exhibiting durable clinical responses. A predictive biomarker for immunotherapy response is the pre-existing T-cell infiltration in the tumor immune microenvironment (TIME). Bulk transcriptomics-based approaches can quantify the degree of T-cell infiltration using deconvolution methods and identify additional markers of inflamed/cold cancers at the bulk level. However, bulk techniques are unable to identify biomarkers of individual cell types. Although single-cell RNA sequencing (scRNAseq) assays are now being used to profile the TIME, to our knowledge there is no method of identifying patients with a T-cell inflamed TIME from scRNAseq data. Here, we describe a method, iBRIDGE, which integrates reference bulk RNAseq data with the malignant subset of scRNAseq datasets to identify patients with a T-cell inflamed TIME. Utilizing two datasets with matched bulk data, we show iBRIDGE results correlated highly with bulk assessments (0.85 and 0.9 correlation coefficients). Using iBRIDGE, we identified markers of inflamed phenotypes in malignant cells, myeloid cells, and fibroblasts, establishing type I and type II interferon pathways as dominant signals, especially in malignant and myeloid cells, and finding the TGFβ-driven mesenchymal phenotype not only in fibroblasts but also in malignant cells. Besides relative classification, per-patient average iBRIDGE scores and independent RNAScope quantifications were utilized for threshold-based absolute classification. Moreover, iBRIDGE can be applied to in vitro grown cancer cell lines and can identify the cell lines that are adapted from inflamed/cold patient tumors.
Only CPU
iBRIDGE
Monocle3 - An analysis toolkit for single-cell RNA-seq
lock icon

BioTuring

Build single-cell trajectories with the software that introduced **pseudotime**. Find out about cell fate decisions and the genes regulated as they're made. Group and classify your cells based on gene expression. Identify new cell types and states and the genes that distinguish them. Find genes that vary between cell types and states, over trajectories, or in response to perturbations using statistically robust, flexible differential analysis. In development, disease, and throughout life, cells transition from one state to another. Monocle introduced the concept of **pseudotime**, which is a measure of how far a cell has moved through biological progress. Many researchers are using single-cell RNA-Seq to discover new cell types. Monocle 3 can help you purify them or characterize them further by identifying key marker genes that you can use in follow-up experiments such as immunofluorescence or flow sorting. **Single-cell trajectory analysis** shows how cells choose between one of several possible end states. The new reconstruction algorithms introduced in Monocle 3 can robustly reveal branching trajectories, along with the genes that cells use to navigate these decisions.

Trends

MUON: multimodal omics analysis framework

BioTuring

Advances in multi-omics have led to an explosion of multimodal datasets to address questions from basic biology to translation. While these data provide novel opportunities for discovery, they also pose management and analysis challenges, thus motiva(More)
Required GPU
muon
Inference and analysis of cell-cell communication using CellChat

BioTuring

Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactor(More)
Required GPU
CellChat
BioTuring Data Converter: Seurat <=> Scanpy for single-cell data transcriptomic and spatial transcriptomics

BioTuring

This notebook illustrates how to convert data from a Seurat object into a Scanpy annotation data and a Scanpy annotation data into a Seurat object using the BioStudio data transformation library (currently under development). It facilitates continued(More)
Monocle3 - An analysis toolkit for single-cell RNA-seq

BioTuring

Build single-cell trajectories with the software that introduced **pseudotime**. Find out about cell fate decisions and the genes regulated as they're made. Group and classify your cells based on gene expression. Identify new cell types and states a(More)
Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata.

BioTuring

SCANPY integrates the analysis possibilities of established R-based frameworks and provides them in a scalable and modular form. Specifically, SCANPY provides preprocessing comparable to SEURAT and CELL RANGER, visualization through TSNE, graph-d(More)
Only CPU
Scanpy
InstaPrism: an R package for fast implementation of BayesPrism

BioTuring

Computational cell-type deconvolution is an important analytic technique for modeling the compositional heterogeneity of bulk gene expression data. A conceptually new Bayesian approach to this problem, BayesPrism, has recently been proposed and has s(More)
Evaluating Performance on Single-Cell Datasets using BioTuring Alpha, Scanpy and Seurat

BioTuring

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression at the individual cell level, enabling researchers to uncover heterogeneity and dynamics within complex cellular populations. To analyze and interpret scRNA-seq da(More)
ADImpute: Adaptive Dropout Imputer

BioTuring

Single-cell RNA sequencing (scRNA-seq) protocols often face challenges in measuring the expression of all genes within a cell due to various factors, such as technical noise, the sensitivity of scRNA-seq techniques, or sample quality. This limitation(More)
Only CPU
ADImpute
infercnvpy: Scanpy plugin to infer copy number variation from single-cell transcriptomics data

BioTuring

InferCNV is used to explore tumor single cell RNA-Seq data to identify evidence for somatic large-scale chromosomal copy number alterations, such as gains or deletions of entire chromosomes or large segments of chromosomes. This is done by exploring (More)
scGPT: Towards Building a Foundational Model for Single-Cell Multi-omics Using Generative AI

BioTuring

Generative pre-trained models have demonstrated exceptional success in various fields, including natural language processing and computer vision. In line with this progress, scGPT has been developed as a foundational model tailored specifically for t(More)
Required GPU
scgpt
Seurat
Identifying tumor cells at the single-cell level using machine learning - inferCNV

BioTuring

Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation—the(More)
Only CPU
inferCNV
pySCENIC: Single-Cell rEgulatory Network Inference and Clustering

BioTuring

SCENIC Suite is a set of tools to study and decipher gene regulation. Its core is based on SCENIC (Single-Cell Regulatory Network Inference and Clustering) which enables you to infer transcription factors, gene regulatory networks and cell types from(More)
Only CPU
pySCENIC
Bioturing Massive-scale Analysis Solution: Running analysis for massive-scale data from Seurat dataset

BioTuring

This tool provides a user-friendly and automated way to analyze large-scale single-cell RNA-seq datasets stored in RDS (Seurat) format. It allows users to run various analysis tools on their data in one command, streamlining the analysis workflow and(More)
Only CPU
inferCNV
SCEVAN: Single CEll Variational ANeuploidy analysis

BioTuring

In the realm of cancer research, grasping the intricacies of intratumor heterogeneity and its interplay with the immune system is paramount for deciphering treatment resistance and tumor progression. While single-cell RNA sequencing unveils diverse t(More)
Required GPU
scevan
Geneformer: a deep learning model for exploring gene networks

BioTuring

Geneformer is a foundation transformer model pretrained on a large-scale corpus of ~30 million single cell transcriptomes to enable context-aware predictions in settings with limited data in network biology. Here, we will demonstrate a basic workflow(More)
Notebooks
Required GPU
muon
Required GPU
CellChat
Only CPU
Scanpy
Only CPU
ADImpute
Required GPU
scgpt
Seurat
Only CPU
inferCNV
Only CPU
pySCENIC
Only CPU
inferCNV
Required GPU
scevan