CellChat

Beta

New application is live now

CellChat

Cell-Cell communication

Notebooks

Premium

Hierarchicell: estimating power for tests of differential expression with single-cell data
lock icon

BioTuring

Power analyses are considered important factors in designing high-quality experiments. However, such analyses remain a challenge in single-cell RNA-seq studies due to the presence of hierarchical structure within the data (Zimmerman et al., 2021). As cells sampled from the same individual share genetic and environmental backgrounds, these cells are more correlated than cells sampled from different individuals. Currently, most power analyses and hypothesis tests (e.g., differential expression) in scRNA-seq data treat cells as if they were independent, thus ignoring the intra-sample correlation, which could lead to incorrect inferences. Hierarchicell (Zimmerman, K.D. and Langefeld, C.D., 2021) is an R package proposed to estimate power for testing hypotheses of differential expression in scRNA-seq data while considering the hierarchical correlation structure that exists in the data. The method offers four important categories of functions: data loading and cleaning, empirical estimation of distributions, simulating expression data, and computing type 1 error or power. In this notebook, we will illustrate an example workflow of Hierarchicell. The notebook is inspired by Hierarchicell's vignette and modified to demonstrate how the tool works on BioTuring's platform.
Multimodal single-cell chromatin analysis with Signac
lock icon

BioTuring

The recent development of experimental methods for measuring chromatin state at single-cell resolution has created a need for computational tools capable of analyzing these datasets. Here we developed Signac, a framework for the analysis of single-cell chromatin data, as an extension of the Seurat R toolkit for single-cell multimodal analysis. **Signac** enables an end-to-end analysis of single-cell chromatin data, including peak calling, quantification, quality control, dimension reduction, clustering, integration with single-cell gene expression datasets, DNA motif analysis, and interactive visualization. Furthermore, Signac facilitates the analysis of multimodal single-cell chromatin data, including datasets that co-assay DNA accessibility with gene expression, protein abundance, and mitochondrial genotype. We demonstrate scaling of the Signac framework to datasets containing over 700,000 cells.
Only CPU
Required PFP
signac
Harmony: fast, sensitive, and accurate integration of single cell data
lock icon

BioTuring

Single-cell RNA-seq datasets in diverse biological and clinical conditions provide great opportunities for the full transcriptional characterization of cell types. However, the integration of these datasets is challeging as they remain biological and techinical differences. **Harmony** is an algorithm allowing fast, sensitive and accurate single-cell data integration.
Only CPU
harmonpy
PAGA: partition-based graph abstraction for trajectory analysis
lock icon

BioTuring

Mapping out the coarse-grained connectivity structures of complex manifolds Biological systems often change over time, as old cells die and new cells are created through differentiation from progenitor cells. This means that at any given time, not all cells will be at the same stage of development. In this sense, a single-cell sample could contain cells at different stages of differentiation. By analyzing the data, we can identify which cells are at which stages and build a model for their biological transitions. By quantifying the connectivity of partitions (groups, clusters) of the single-cell graph, partition-based graph abstraction (PAGA) generates a much simpler abstracted graph (PAGA graph) of partitions, in which edge weights represent confidence in the presence of connections. In this notebook, we will introduce the concept of single-cell Trajectory Analysis using PAGA (Partition-based graph abstraction) in the context of hematopoietic differentiation.

Trends

Bioturing Massive-scale Analysis Solution for CellChat: Running analysis for massive-scale data from Seurat dataset

BioTuring

This tool provides a user-friendly and automated way to analyze large-scale single-cell RNA-seq datasets stored in RDS (Seurat) format. It allows users to run various analysis tools on their data in one command, streamlining the analysis workflow and(More)
Only CPU
CellChat
scGPT: Towards Building a Foundational Model for Single-Cell Multi-omics Using Generative AI

BioTuring

Generative pre-trained models have demonstrated exceptional success in various fields, including natural language processing and computer vision. In line with this progress, scGPT has been developed as a foundational model tailored specifically for t(More)
Required GPU
scgpt
Seurat
CopyKAT: Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes

BioTuring

Classification of tumor and normal cells in the tumor microenvironment from scRNA-seq data is an ongoing challenge in human cancer study. Copy number karyotyping of aneuploid tumors (***copyKAT***) (Gao, Ruli, et al., 2021) is a method proposed f(More)
Geneformer: a deep learning model for exploring gene networks

BioTuring

Geneformer is a foundation transformer model pretrained on a large-scale corpus of ~30 million single cell transcriptomes to enable context-aware predictions in settings with limited data in network biology. Here, we will demonstrate a basic workflow(More)
Inference and analysis of cell-cell communication using CellChat

BioTuring

Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactor(More)
Required GPU
CellChat
BioTuring Data Converter: Seurat <=> Scanpy for single-cell data transcriptomic and spatial transcriptomics

BioTuring

This notebook illustrates how to convert data from a Seurat object into a Scanpy annotation data and a Scanpy annotation data into a Seurat object using the BioStudio data transformation library (currently under development). It facilitates continued(More)
Monorail-pipeline and Recount3

BioTuring

Monorail can be used to process local and/or private data, allowing results to be directly compared to any study in recount3. Taken together, Monorail-pipeline tools help biologists maximize the utility of publicly available RNA-seq data, especially (More)
Only CPU
recount3
Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram

BioTuring

Charting an organs’ biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells compre(More)
Required GPU
Tangram
Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata.

BioTuring

SCANPY integrates the analysis possibilities of established R-based frameworks and provides them in a scalable and modular form. Specifically, SCANPY provides preprocessing comparable to SEURAT and CELL RANGER, visualization through TSNE, graph-d(More)
Only CPU
Scanpy
WGCNA: an R package for Weighted Gene Correlation Network Analysis

BioTuring

WGCNA: an R package for Weighted Gene Correlation Network Analysis Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing (More)
Only CPU
WGCNA
FunPat: Function-based Pattern analysis on RNA-seq time series data

BioTuring

Dynamic expression data, nowadays obtained using high-throughput RNA sequencing (RNA-seq), are essential to monitor transient gene expression changes and to study the dynamics of their transcriptional activity in the cell or response to stimuli. FunP(More)
Only CPU
FunPat
Monocle3 - An analysis toolkit for single-cell RNA-seq

BioTuring

Build single-cell trajectories with the software that introduced **pseudotime**. Find out about cell fate decisions and the genes regulated as they're made. Group and classify your cells based on gene expression. Identify new cell types and states a(More)
COMMOT: Screening cell-cell communication in spatial transcriptomics via collective optimal transport

BioTuring

In this notebook, we present COMMOT (COMMunication analysis by Optimal Transport) to infer cell-cell communication (CCC) in spatial transcriptomic, a package that infers CCC by simultaneously considering numerous ligand–receptor pairs for either sp(More)
Only CPU
COMMOT
MuSiC: Multi-subject Single-cell Deconvolution

BioTuring

Knowledge of cell type composition in disease relevant tissues is an important step towards the identification of cellular targets of disease. MuSiC is a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq(More)
Only CPU
MuSiC
DWLS: Gene Expression Deconvolution Using Dampened Weighted Least Squares

BioTuring

Dampened weighted least squares (DWLS) is an estimation method for gene expression deconvolution, in which the cell-type composition of a bulk RNA-seq data set is computationally inferred. This method corrects common biases towards cell types that ar(More)
Only CPU
DWLS
Notebooks
Only CPU
CellChat
Required GPU
scgpt
Seurat
Required GPU
CellChat
Only CPU
recount3
Required GPU
Tangram
Only CPU
Scanpy
Only CPU
WGCNA
Only CPU
FunPat
Only CPU
COMMOT
Only CPU
MuSiC
Only CPU
DWLS
...