CellChat

Beta

New application is live now

CellChat

Cell-Cell communication

Notebooks

Premium

Cell2location: Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomic
lock icon

BioTuring

Cell2location is a principled Bayesian model that can resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues. Cell2location accounts for technical sources of variation and borrows statistical strength across locations, thereby enabling the integration of single cell and spatial transcriptomics with higher sensitivity and resolution than existing tools. This is achieved by estimating which combination of cell types in which cell abundance could have given the mRNA counts in the spatial data, while modelling technical effects (platform/technology effect, contaminating RNA, unexplained variance). This tutorial shows how to use cell2location method for spatially resolving fine-grained cell types by integrating 10X Visium data with scRNA-seq reference of cell types. Cell2location is a principled Bayesian model that estimates which combination of cell types in which cell abundance could have given the mRNA counts in the spatial data, while modelling technical effects (platform/technology effect, contaminating RNA, unexplained variance).
Required GPU
Cell2Location
Spatial charting of single-cell transcriptomes in tissues - celltrek
lock icon

BioTuring

Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections but do not have single-cell resolution. Here, Runmin Wei (Siyuan He, Shanshan Bai, Emi Sei, Min Hu, Alastair Thompson, Ken Chen, Savitri Krishnamurthy & Nicholas E. Navin) developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. They benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. They then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. They performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T-cell states adjacent to the tumor areas.
Only CPU
CellTrek
DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors
lock icon

BioTuring

Single-cell RNA sequencing (scRNA-seq) data often encountered technical artifacts called "doublets" which are two cells that are sequenced under the same cellular barcode. Doublets formed from different cell types or states are called heterotypic and homotypic otherwise. These factors constrain cell throughput and may result in misleading biological interpretations. DoubletFinder (McGinnis, Murrow, and Gartner 2019) is one of the methods proposed for doublet detection. In this notebook, we will illustrate an example workflow of DoubletFinder. We use a 10x Genomics dataset which captures peripheral blood mononuclear cells (PBMCs) from a healthy donor stained with a panel of 31 TotalSeqâ„¢-B antibodies (BioLegend).
infercnvpy: Scanpy plugin to infer copy number variation from single-cell transcriptomics data
lock icon

BioTuring

InferCNV is used to explore tumor single cell RNA-Seq data to identify evidence for somatic large-scale chromosomal copy number alterations, such as gains or deletions of entire chromosomes or large segments of chromosomes. This is done by exploring expression intensity of genes across positions of tumor genome in comparison to a set of reference 'normal' cells. A heatmap is generated illustrating the relative expression intensities across each chromosome, and it often becomes readily apparent as to which regions of the tumor genome are over-abundant or less-abundant as compared to that of normal cells. **Infercnvpy** is a scalable python library to infer copy number variation (CNV) events from single cell transcriptomics data. It is heavliy inspired by InferCNV, but plays nicely with scanpy and is much more scalable.

Trends

MUON: multimodal omics analysis framework

BioTuring

Advances in multi-omics have led to an explosion of multimodal datasets to address questions from basic biology to translation. While these data provide novel opportunities for discovery, they also pose management and analysis challenges, thus motiva(More)
Required GPU
muon
Inference and analysis of cell-cell communication using CellChat

BioTuring

Understanding global communications among cells requires accurate representation of cell-cell signaling links and effective systems-level analyses of those links. We construct a database of interactions among ligands, receptors and their cofactor(More)
Required GPU
CellChat
BioTuring Data Converter: Seurat <=> Scanpy for single-cell data transcriptomic and spatial transcriptomics

BioTuring

This notebook illustrates how to convert data from a Seurat object into a Scanpy annotation data and a Scanpy annotation data into a Seurat object using the BioStudio data transformation library (currently under development). It facilitates continued(More)
Monocle3 - An analysis toolkit for single-cell RNA-seq

BioTuring

Build single-cell trajectories with the software that introduced **pseudotime**. Find out about cell fate decisions and the genes regulated as they're made. Group and classify your cells based on gene expression. Identify new cell types and states a(More)
Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata.

BioTuring

SCANPY integrates the analysis possibilities of established R-based frameworks and provides them in a scalable and modular form. Specifically, SCANPY provides preprocessing comparable to SEURAT and CELL RANGER, visualization through TSNE, graph-d(More)
Only CPU
Scanpy
InstaPrism: an R package for fast implementation of BayesPrism

BioTuring

Computational cell-type deconvolution is an important analytic technique for modeling the compositional heterogeneity of bulk gene expression data. A conceptually new Bayesian approach to this problem, BayesPrism, has recently been proposed and has s(More)
Evaluating Performance on Single-Cell Datasets using BioTuring Alpha, Scanpy and Seurat

BioTuring

Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression at the individual cell level, enabling researchers to uncover heterogeneity and dynamics within complex cellular populations. To analyze and interpret scRNA-seq da(More)
ADImpute: Adaptive Dropout Imputer

BioTuring

Single-cell RNA sequencing (scRNA-seq) protocols often face challenges in measuring the expression of all genes within a cell due to various factors, such as technical noise, the sensitivity of scRNA-seq techniques, or sample quality. This limitation(More)
Only CPU
ADImpute
infercnvpy: Scanpy plugin to infer copy number variation from single-cell transcriptomics data

BioTuring

InferCNV is used to explore tumor single cell RNA-Seq data to identify evidence for somatic large-scale chromosomal copy number alterations, such as gains or deletions of entire chromosomes or large segments of chromosomes. This is done by exploring (More)
scGPT: Towards Building a Foundational Model for Single-Cell Multi-omics Using Generative AI

BioTuring

Generative pre-trained models have demonstrated exceptional success in various fields, including natural language processing and computer vision. In line with this progress, scGPT has been developed as a foundational model tailored specifically for t(More)
Required GPU
scgpt
Seurat
Identifying tumor cells at the single-cell level using machine learning - inferCNV

BioTuring

Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation—the(More)
Only CPU
inferCNV
pySCENIC: Single-Cell rEgulatory Network Inference and Clustering

BioTuring

SCENIC Suite is a set of tools to study and decipher gene regulation. Its core is based on SCENIC (Single-Cell Regulatory Network Inference and Clustering) which enables you to infer transcription factors, gene regulatory networks and cell types from(More)
Only CPU
pySCENIC
Bioturing Massive-scale Analysis Solution: Running analysis for massive-scale data from Seurat dataset

BioTuring

This tool provides a user-friendly and automated way to analyze large-scale single-cell RNA-seq datasets stored in RDS (Seurat) format. It allows users to run various analysis tools on their data in one command, streamlining the analysis workflow and(More)
Only CPU
inferCNV
SCEVAN: Single CEll Variational ANeuploidy analysis

BioTuring

In the realm of cancer research, grasping the intricacies of intratumor heterogeneity and its interplay with the immune system is paramount for deciphering treatment resistance and tumor progression. While single-cell RNA sequencing unveils diverse t(More)
Required GPU
scevan
Geneformer: a deep learning model for exploring gene networks

BioTuring

Geneformer is a foundation transformer model pretrained on a large-scale corpus of ~30 million single cell transcriptomes to enable context-aware predictions in settings with limited data in network biology. Here, we will demonstrate a basic workflow(More)
Notebooks
Required GPU
muon
Required GPU
CellChat
Only CPU
Scanpy
Only CPU
ADImpute
Required GPU
scgpt
Seurat
Only CPU
inferCNV
Only CPU
pySCENIC
Only CPU
inferCNV
Required GPU
scevan